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Abstract: With only two parameters the New Distribution (ND) introduced
recently by Doostmoradi (2018) is very flexible for modeling litetime data
because the failure rate function can have different shapes (increasing,
decreasing and unimodal). This work is devoted to the maximum likelihood
estimation of the unknown parameters and the construction of goodness-of-
fit test statistics for this model when data are right censored. Also, a
comparative study is provided to distinguish between this model (ND) and
the competing distributions, namely the exponentiatedWeibull (EW),
modified Weibull (MW), extended generalized Lindley distribution (EGL),
generalized Lindley (GL), power Lindley (PL), and the inverse Lindley (IL).
An important simulation study was carried out and theoretical results obtained
through this study are applied to real data sets from reliability and survival
analysis.

Keywords: Censored data, Fisher information matrix, maximum likelihood
estimation, modified goodness-of-fit test.

1. Introduction

Until the last two decades, existing models in the statistical literature could not describe properly
the collected observations obtained from experiences, so researchers tried to provide new ones.
Different methods are developed to generalize classical models particularly by adding new parameters
to the baseline distributions to obtain more flexibility. Except the inverse Lindley (IL) introduced
by Sharma et al, (2015), the proposed models have three and more parameters such as modified
Weibull (MW) (Lai et al. 2003), generalized Lindley (GL) (Zakerzadeh and Dolati, 2009), power
Lindley (PL) (Ghitany et al., 2013), generalized gamma (GG) (Stacy et al.,1962), extended
generalized Lindley distribution (EGL) (Torabi et al., 2014), Entezar distribution (ENT)
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(Doostmoradi et al., 2016), exponential flexible Weibull extension (EFWE) (Beih et al., 2017).
Recently, Doostmoradi (2018) proposed a very interesting flexible distribution so-called a new
two-parameter distribution (ND). With only two parameters, this model can have an increasing,
decreasing and unimodal failure rates. Using Akaike Information criterion  (AIC), likelihood ratio
(LR), bayesian information criterion (BIC) and rate function plots to fit reliability data to this new
distribution, the author showed that this distribution can describe reliability data better than the
exponentiated Weibull (EW) introduced by Mudholkar et al. (1995), modified Weibull MW, extended
generalized Lindley EGL, Entezar ENT, generalized Lindley GL, power Lindley PL, generalized
gamma GG, inverse Lindley IL, exponential flexible Weibull extension EFWE and other distributions.

The flexibility of this new model allows it to certainly model reliability and survival analysis
data which are often censored. In this work, we firstly determine the maximum likelihood estimators
of the unknown parameters of this model when data are right censored. Then we propose a criteria
goodness-of-fit test which takes into account the unknown parameters and censorship. The
construction of this statistic is based on the approach of Bagdonavicius and Nikulin (2011). Also, a
comparative study is provided to distinguish between ND distribution and all its competing
distributions cited above.

Theoretical results are confirmed by an important simulation study. We generated samples of
different sizes and different percentage of right censoring from this model. Then, maximum likelihood
estimators and mean square errors of the unknown parameters of all these samples are computed.
Estimated information matrix and criteria goodness-of-fit test Y² are also computed and empirical
proportions of rejection of the null hypothesis H0 for 1%, 5% and 10% levels of significance are
compared to the theoretical ones. A Comparative study between the ND distribution and some
alternative distributions namely EW, MW, EGL, GL, PL, and IL is also evaluated.

2. New two-parameter Distribution ND

Characterized by two parameters, the distribution function of the new-two parameter distribution
(ND) introduced by Doostmoradi (2018) is

F(t) = 1 – (1 + �t�)e–�t�

The density function, reliability and rate functions are respectively
f (t) = �2�t2�–1e–�t�, �, � > 0, t > 0

S(t) = (1 + �t�)e–�t�
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and the cumulative rate function is

H(t) = –lnS(t; �, �) = �t� – ln(1 + �t�)
After studying statistical properties, maximum likelihood estimators and estimated information

matrix, the author used Akaike Information criterion (AIC), likelihood ratio (LR), bayesian
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information criterion (BIC) and rate function plots to fit reliability data to this new distribution in
complete data case. Reliability data set were used to show the flexibility of this model. For more
details, one can see Doostmoradi (2018).

3. Maximum Likelihood Estimation with Right Censorship

Let us consider T = (T1, T2, ..., Tn
)T a sample from ND distribution with the parameter vector � = (�,

�)T which can contain right censored data with fixed censoring time �. Each T
i
 can be written as T

t

= (t
i
, �

i
) where

0 if   is a censoring time

1 if  is a failure time
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The right censoring is assumed to be non-informative, so the log-likelihood function can be

written as:
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The maximum likelihood estimators � and � of the unknown parameters � and � are derived

from the nonlinear following score equations:
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The explicit form of �̂  and �̂  cannot be obtained, so one can use numerical methods.

4. Estimated Fisher information matrix Î

The components of the estimated information matrix I = (1
ij
)2×2 are obtained by
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where the parameters � and � are replaced by their maximum likelihood estimators (MLEs) �̂  and
�̂ .

5. Test Statistic for Right Censored Data

Let T1, ..., Tn
 be n i.i.d. random variables grouped into k classes I

j
. To assess the adequacy of a

parametric model F0

H0: P(T
i
 � t | H0) = F0(t; �), t � 0, � = (�1, ..., �s

)T ����� Rs

when data are right censored and the parameter vector � is unknown, Bagdonavicius and Nikulin
(2011) proposed a statistic test Y² based on the vector

1
( ),j j jZ U e

n
� �  j = 1, 2, ..., k), with k = s.

This one represents the differences between observed and expected numbers of failures (U
j

and e
j
) to fall into these grouping intervals I

j
 = (a

j–1, aj
] with a0 = 0, a

k
 = �, where � is a finite time.

The authors considered a
j
 as random data functions such as the k intervals chosen have equal

expected numbers of failures e
j
.

The statistic test Y² is defined by
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Under the null hypothesis H0, the limit distribution of the statistic Y² is a chi-square with k =
rank(�) degrees of freedom. The description and applications of modified chi-square tests are
discussed in Voinov et al. (2013).

The interval limits a
j
 for grouping data into j classes I

j
 are considered as data functions and

defined by
1
11
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such as the expected failure times e
j
 to fall into these intervals are k

j

E
e

k
�  for any j, with

1
1 ( , )i

r l lE H t�
�� � � . The distribution of this statistic test Y

n
2 is chi-square (see Voinov et al., 2013).

6. Criteria Test for the New Distribution

For testing the null hypothesis H0  that data belong to the ND model, we construct a modified
chi-squared type goodness-of-fit test based on the statistic Y². Suppose that � is a finite time, and
observed data are grouped into k > s sub-intervals I

j
 = (a

j–1, aj
] of [0, �]. The limit intervals a

j
 are

considered as random variables such that the expected numbers of failures in each interval I
j
 are the

same, so the expected numbers of failures  are obtained as

Estimated Matrix Ŵ et Ĉ

The components of the estimated matrix Ŵ  are derived from the estimated matrix Ĉ  which is
given by:
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Therefore the quadratic form of the test statistic can be obtained easily:

7. Simulations

7.1 Maximum Likelihood Estimation

We generated N = 10,000 right censored samples with different sizes (n = 15, 25, 50, 130, 350, 500)
from the ND model with parameters ��= 2 and ��= 1.5. Using R statistical software and the Barzilai-
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Borwein (BB) algorithm (Ravi, 2009), we calculate the maximum likelihood estimators of the
unknown parameters and their mean squared errors (S.M.E). The results are given in Table 1.

Table1: Mean Simulated values of MLEs ˆ  and ˆ   and their corresponding square mean errors

N = 10,000 n
1
 = 15 n

2
 = 25 n

3
 = 50 n

4
 = 130 n

5
 = 350 n

6
 = 500

�̂ 1.8645 1.8857 1.9345 1.9538 1.9754 2.0006

S.M.E 0.0046 0.0031 0.0029 0.0024 0.0018 0.0009

Bias(�̂) –0.0595 0.0391 –0.0274 0.0187 –0.0084 -0.0010

�̂ 1.8546 1.7925 1.7285 1.6845 1.6294 1.5098

S.M.E 0.0058 0.0042 0.0035 0.0028 0.0020 0.0012

Bias(�̂) 0.0533 –0.0350 0.0212 -0.0147 0.0058 –0.0015

The maximum likelihood estimated parameter values, presented in Table 1, agree closely with
the true parameter values.

7.2 Test Statistic Y²

Using  right censored simulated samples with different percentage (15% and 30%) of right censoring
and different sizes (n = 25, 50, 130, 350, 500) we calculate the test statistic Y² for each sample with
respect to the ND model and we compare the obtained values with the theoretical levels of
significance (� = 0.01, 0.05, 0,1). The results are summarized in Table 2 and Table 3.

Table 2: Simulated levels of significance for Y² against their theoretical values (15% of censorship)

N = 10,000 n
1
 = 25 n

2
 = 50 n

3
 = 130 n

4
 = 350 n

5
 = 500

� = 1% 0.0045 0.0054 0.0096 0.0101 0.0102

� = 5% 0.0488 0.0492 0.0495 0.0498 0.0504

��= 10% 0.0984 0.0991 0.0998 0.01012 0.1004

Table 3: Simulated levels of significance for Y² against their theoretical values (30% of censorship)

N = 10,000 n
1
 = 25 n

2
 = 50 n

3
 = 130 n

4
 = 350 n

5
 = 500

� = 1% 0.0092 0.0093 0.0095 0.0098 0.0101

��= 5% 0.0478 0.0489 0.0492 0.0495 0.0499

��= 10% 0.0986 0.0992 0.0996 0.0998 0.1001

As we can see empirical proportions of rejection of the null hypothesis H0 for � = 1%, 5% and
10% levels of significance for all sample sizes and for different percentage of censorship (Table 2
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and Table 3) are very close to the theoretical ones. Therefore, the test statistic Y² proposed in this
work can be applied to fit data to ND.

7.3 Power Study

To evaluate the power of the test statistic Y² proposed whether data fits well to the ND, we have
considered some competing distributions proposed by the author in his study, namely the
exponentiated Weibull (EW), modified Weibull (MW), extended generalized Lindley distribution
(EGL), generalized Lindley (GL), power Lindley (PL), and the inverse Lindley (IL). So, we generate
N = 10,000 random samples under alternative hypotheses. The power analysis has been carried out
for sample sizes (n = 25, 50, 130, 350, 500) at levels of significance (� = 0.01, 0.05, 0.1). Using
maximum likelihood estimates, the powers of Y² test for testing about belonging of the samples to
ND distribution against that sample is from EW, MW, EGL, GL, PL, and IL distributions are given
in Tables 4.a, b, c, d, e, f.

Table 4a: Power of Y² for ND against EW

N = 10,000 n
1
 = 25 n

2
 = 50 n

3
 = 130 n

4
 = 350 n

5
 = 500

� = 1% 0.4856 0.5124 0.6147 0.7487 0.7945
� = 5% 0.6785 0.6954 0.7458 0.8125 0.8952
� = 10% 0.7984 0.8120 0.8523 0.9525 0.9823

Table 4b: Power of Y² for ND against MW

N = 10,000 n
1
 = 25 n

2
 = 50 n

3
 = 130 n

4
 = 350 n

5
 = 500

� = 1% 0.4236 0.5349 0.6451 0.7124 0.7356

� = 5% 0.5124 0.7452 0.7321 0.8325 0.8468
� = 10% 0.6252 0.8021 0.8451 0.9354 0.9745

Table 4c: Power of Y² for ND against EGL

N = 10,000 n
1
 = 25 n

2
 = 50 n

3
 = 130 n

4
 = 350 n

5
 = 500

� = 1% 0.4125 0.5326 0.6954 0.7356 0.8421

� = 5% 0.5684 0.7584 0.7954 0.8694 0.9162
� = 10% 0.7845 0.8151 0.8456 0.9123 0.9725

Discussion

On the basis of tables above, it is observed that at level of significance 0.10, all test power values
for Y² are higher than 80%, then we can distinguish ND from the competing distributions for all
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Table 4d: Power of Y² for ND against GL

N = 10,000 n
1
 = 25 n

2
 = 50 n

3
 = 130 n

4
 = 350 n

5
 = 500

� = 1% 0.4784 0.6254 0.7854 0.7954 0.8120

� = 5% 0.625 0.7854 0.8024 0.8562 0.9014

� = 10% 0.7541 0.8123 0.9154 0.9512 0.9974

Table 4e: Power of Y² for ND against PL

N = 10,000 n
1
 = 25 n

2
 = 50 n

3
 = 130 n

4
 = 350 n

5
 = 500

� = 1% 0.4958 0.6147 0.7245 0.7421 0.8214

� = 5% 0.6147 0.7689 0.7959 0.8952 0.9436

� = 10% 0.7845 0.8214 0.9245 0.9214 0.9784

Table 4f: Power of Y² for ND against IL

N = 10,000 n
1
 = 25 n

2
 = 50 n

3
 = 130 n

4
 = 350 n

5
 = 500

� = 1% 0.5123 0.6458 0.7154 0.7536 0.8421

� = 5% 0.6895 0.7561 0.8425 0.8954 0.9541

� = 10% 0.8124 0.8351 0.9124 0.9541 0.9989

sample sizes. At level of significance 0.05, test power values are about 80% for sample sizes superior
or equal to 50. Then we can distinguish ND from the competing distributions for big sizes sample.
The power of Y² is least when comparing ND and modified Weibull MW (Table 4.b) which means
that these distributions are quite close to each other for little sample sizes.

For all levels of significance and for all sample sizes, Power in case of testing goodness-of-fit
of ND versus IL distribution is more than in other cases. So, the proposed test statistic Y² can detect
the difference between the ND and IL distribution with high power and hence a small sample is
sufficient to differentiate ND from IL distribution.

As expected, the results given in the tables above show that the new two-parameter distribution
ND can be used to fit data  better than several models.

8. Data Analysis

In this section, we apply the statistic Y² proposed in this work to fit two censored real data sets to
the ND model. The first one is from survival analysis and the second one is from reliability.
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Example 1:

We consider the bone marrow transplant data (Klein and Moeschberger, 2003) for patients suffering
from acute lymphoblastic leukemia. This data consist of time (in days) to death or on study time
after anallogenic bone marrow transplant for 38 patients. The bone marrow transplant is a standard
treatment for acute leukemia.

Recovery following bone marrow transplantation is a complex process. Immediately following
transplantation, patients have depressed platelet counts and have higher hazard rate for the
development of infections but as the time passes the hazard decreases. Data are given in Table 5,
where * denotes censored observations.

Table 5: Time to death (in days) after bone marrow transplant.

1 86 107 110 122 156 162 172 194 226*

243 262 262 269 276 350* 371 417 418 466

487 526 530* 716 781 996* 1111* 1167* 1182* 1199*

1279 1330* 1377* 1433* 1462* 1496** 1602* 2081*

We use the statistic test provided above to verify if these data are modeled by the ND distribution.
Using BB solve software, we calculate the maximum likelihood estimators of the unknown
parameters

ˆ ˆˆ( , ) (0.5434, 0.1716) .T T� � � � �
Then, we grouped the observations into k = 5 intervals I

j
. The intermediate calculations are

given in Table 6.

Table 6: Values of  1 2
ˆ ˆ, , , ,j j j J ja U C C e

a
j

170.652 292.521 492.233 1235.215 2081

U
j

7 8 6 9 8

1
ˆ

JC 0.9512 1.2013 0.3156 1.6234 0.1578

2
ˆ

JC –0.2845 –0.1542 -0.0145 0.1243 0.3154

e
j

4.6183 4.6183 4.6183 4.6183 4.6183

The value of the statistic test Y
n
2 is obtained as follows:

Y
n
2 = X2 + Q = 3.1562 + 1.9623 = 5.1185

As the value of Y
n
2 = 5.1185 is less than the critical value �5

2 = 11.0705 (for significance evel �
= 0.05), so we can say that these data can be fitted by the ND distribution.

    We also calculated the test statistics Y
n
2 to fit these data to the competing models. The results

are given in table 7.
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Table 7: Values of the test statistics for LeukemiaY
n
2 free survival times to fit different alternatives

Modeling distribution Y
n
2

New two-parameter distribution ND, 5.1185
Exponentiated Weibull (EW) 9.3789
Modified Weibull (MW) 7.2347

Extended generalized Lindley distribution (EGL) 10.1967
GeneralizedLindley (GL) 7.7452
Power Lindley (PL) 8.3124

Inverse Lindley (IL) 11.0.235

From these results, we have showed that the ND distribution fit these data better than the
competing distributions. It can be seen clearly in the pdfs plots (Figure 1).

Example 2:

In this example, the data set represent the number of successive failures for the air conditioning
system of each member in a fleet of 13 Boeing 720 jet airplanes (1963) and reported in Doostmoradi
(2018). The observations are:

194, 413, 90, 74, 55, 23, 97, 50, 359, 50, 130, 487, 57, 102, 15, 14, 10, 57, 320, 261, 51, 44, 9,
254, 493, 33, 18, 209, 41, 58, 60, 48, 56, 87, 11, 102, 12, 5, 14,14, 29, 37, 186, 29, 104, 7, 4,  72,

Figure 1
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270, 283, 7, 61, 100, 61, 502, 220, 120, 141, 22, 603, 35, 98, 54, 100, 11, 181, 65, 49, 12, 239, 14,
18, 39, 3, 12, 5, 32, 9, 438, 43, 134, 184, 20, 386, 182, 71, 80, 188, 230, 152, 5, 36, 79, 59, 33, 246,
1, 79, 3, 27, 201, 84, 27, 156, 21, 16, 88, 130, 14, 118, 44, 15, 42, 106, 46, 230, 26, 59, 153, 104, 20,
206, 5, 66, 34, 29, 26, 35, 5, 82, 31, 118, 326, 12, 54, 36, 34, 18, 25, 120, 31, 22, 18, 216, 139, 67,
310, 3, 46, 210, 57, 76, 14, 111, 97, 62, 39, 30, 7, 44, 11, 63, 23, 22, 23, 14, 18, 13, 34, 16, 18, 130,
90, 163, 208, 1, 24, 70, 16, 101, 52, 208, 95, 62, 11, 191, 14, 71.

Using different methods, the authors showed that the ND distribution fit these data better than
several alternatives. To confirm this fact, we calculated the corresponding test statistic Y² of this
sample. Under the null hypothesis that these data are modeled by the ND distribution, the maximum
likelihood estimators of the unknown parameters obtained by iterative methods are:

ˆ ˆˆ( , ) (0.1397, 0.6183) .T T� � � � �
If data are grouped into k = 6 intervals I

j
, the values of the components of the test statistic are

calculated and summarized in Table 8.

Table 8: Values of 1 2
ˆ ˆ, , , ,j j j J ja U C C e

a
j

17 40 64 115 215

U
j

39 40 30 31 27

1
ˆ

JC 3.178 1.454 5.124 3.124 2.784

2
ˆ

JC 2.365 4.157 6.214 2.154 3.715

e
j

31.361 31.361 31.361 31.361 31.361

We deduced the value of the statistic test Y
n
2:

Y
n
2 = X2 + Q = 5.6258 + 4.1592 = 9.785

For significance level � = 0.05, the critical value �6
2 = 12.3204 is superior than the value of Y

n
2

= 9.785. So, the results confirm that the studied data can be described by the ND.
As several alternatives can be used to model these data, we use the proposed test statistic to

distinguish between theseones.To this end, we calculated the values of the test statistics  for the

alternatives. The results are given in Table 9.

Modeling distribution Y
n
2

New two-parameter distribution ND, 9.785

Exponentiated Weibull (EW) 10.054

Modified Weibull (MW) 11.235

Extended generalized Lindley distribution (EGL) 10.795

Inverse Lindley (IL) 12.055

Power Lindley (PL) 10.415
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As expected, the new two-parameter distribution ND fit the data set better than the EW, MW,
EGL,IL and PL distributions.

As in the previews example, we use the pdfs plots of the data for the different distributions
which confirm our result (Fig.2).

Conclusion

Among the new models proposed in the literature, the new two-parameter distribution ND is
interesting because of its different forms of the failure rate function. It can be used in several areas
and particularly in reliability and medical studies where data are often censored. In this work, after
calculating the maximum likelihood estimators of the model parameters, a criteria of goodness-of-
fit test statistic Y² is provided to validate this distribution when data are right censored. Censored
and complete real data sets from reliability and survival analysis are used to illustrate the usefulness
of this model and the practicability of the proposed test. In addition and as  shown in the power
study, we can conclude that the proposed goodness-of fit test Y² for the new two-parameter
distribution ND has a high power, so it can be used to differentiate ND from the competing
distributions for small and large sample sizes.
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